Research


Latest SCI publications

Latest Projects

Research project (§ 26 & § 27)
Duration : 2017-03-01 - 2022-02-28

The Forest - Hunting Dialog in Austria was founded in 2012 with the idea to improve the interaction between hunters and forester so that the browsing and bark peeling impacts due to too high deer populations are reduced. Three working groups work on different aspects in preventing deer damage. Working group 1 deals with legal implications, Working group 2 addresses monitoring problems and strategies to enhance the documentation of the different deer damage counting systems, Working group 3 is related to public relation activities and public perception to enhance the public awareness of deer damage within Austrian forests.
Research project (§ 26 & § 27)
Duration : 2015-12-02 - 2019-12-01

Ash dieback caused by the ascomycete Hymenoscyphus fraxineus has spread recently all over Austria. This disease has caused severe damage on ash trees, and can cause yield loss, dieback and even dieback of affected trees. This disease is currently causing major changes in the composition and ecology of hardwood forests in Austria. The management of ash has more or less stopped, as only old trees are harvested but regeneration is absent. However, also in highly affected stands apparently resistant trees are detected regularly. These trees usually show only few or no symptoms of the disease and probably have a high level of resistance against the pathogen. Up to 5% of the clones in Austrian seed orchards appear to be resistant to the disease to a certain degree. International research has provided evidence that a large part of this resistance has a genetic basis. Based on these results efforts to select resistant clones seem very promising to maintain ash as one of the main hardwood species in Austria. The basis for such an endeavour is the collection of a large number of resistant clones from all over Austria, both to be able to select the best clones, but also to maintain genetic diversity in the species. The goal of the proposed project is the selection of several hundred resistant mother clones to conserve the genetic diversity of the species. The breeding value of the selected mother trees will be calculated based on the performance of single tree offspring in a common garden experiment. In a further step male trees (putative father) of these offspring will be identified by paternity analysis to be able also to select male ash trees for a future seed orchard. Both the best mother and father trees are to be propagated by grafting and cuttings, to preserve their genetic information. This selection of highly resistant clones with superior resistance against ash dieback will enable the set-up of new ash clone seed orchards. Vegetatively propagated plants shall also be provided to end users, to provide resistant reproductive material to forest managers, as a direct output of the project.
Research project (§ 26 & § 27)
Duration : 2016-12-01 - 2019-11-30

Forests are increasingly exposed to climate-driven biotic and abiotic disturbances. Climate change could thus jeopardize forests' capacity to deliver ecosystem services. There is therefore an urgent need to adapt forest management so as to promote and improve forest resilience at different spatial and temporal scales. Mixed forests are considered as one of the main options for adapting to and reducing risks of climate change. Higher tree species diversity is expected to provide higher productivity, higher temporal stability, higher resistance and resilience to disturbances and a more diverse portfolio of ecosystem services. However, knowledge about how to design and manage mixed forests to achieve these potential benefits is still lacking. REFORM aims at identifying the most optimal composition and management of mixed forests in order to reduce natural and socio-economic impacts of climate change. REFORM is based on data from observational, experimental and modelling platforms provided by twelve partners from ten countries covering different bioclimatic regions in Europe. It will investigate mixed forest features, like species composition, mixing patterns, stand age and density, that best explain resistance and resilience to biotic and abiotic disturbances. It will define the management options to achieve and maintain these optimal mixed forest features. The impact of these management alternatives on the provision of ecosystem services will be also evaluated. REFORM will provide forest managers with practical tools for increasing resilience of mixed forests using a scenario analysis at different scales, including local-adapted silviculture guidelines, forest models, and transnational training forest networks. The project will make recommendations to forest policy makers for the promotion of resilient mixed forestry.

Supervised Theses and Dissertations